
What is programming?

Computer programming, also known as coding, is the process of creating software. In

other words, computer programming means the writing of instructions for a computer

to perform.

For example, if we have two sets of some data and we need to create from them a

third set of data, we have to write the instructions for the following operations:

•Loading the first set of data into the memory of computer.

•Loading the second set of data into the memory of computer.

•Creating the third set of data (for example by selecting some units of data from the

both initial sets and merging them into more complicated units for the resulting set).

•Saving the resulting set in a disk file.

•Reporting about the successful end (or failure) on the screen.

These instructions may be written even by a simple text editor. The set of instructions

is called as source code. Of course, it cannot be not written in English or Estonian. We

have to use some specific language with strictly specified syntax and semantics that

the computer is able to undestand. There are several thousands of programming

languages but only some of them are widely known and used. In this course we'll base

on language called "C".

Integrated development environment

The source code can be written using simple text editors like Notepad. In C the filename

extension of source code file is *.c or *.cpp. But this is just the first step in the software

developing process. To get a program that can run (i.e. the executable program packed

into an *.exe file) we need specific tools that are able to create executable from the initial

*.c or *.cpp file(s). In other words, we need tools to build the program.

At most cases, the first versions of a program contain errors. The process of finding and

fixing errors is called debugging. For that we need specific tools called debuggers.

Integrated development environment (IDE) is a very large and complicated software

application providing almost all the facilities a programmer needs for software

development: text editor, building tools, debuggers, etc. In our course we use IDE called

Microsoft Visual Studio 2022.

Advice: open https://visualstudio.microsoft.com/downloads/ and install into your laptop

freeware Microsoft Visual Studio Community Edition 2022. It is the simplified version of

Visual Studio. After installation create shortcut for "C:\Program Files\Microsoft Visual

Studio\2022\Community\Common7\IDE\devenv.exe". Clicking on this shortcut launches

the IDE.

Some other popular IDE-s for programming in C: Code::Blocks, Eclipse, Qt Creator,

NetBeans, CLion.

https://visualstudio.microsoft.com/downloads/

My first program (1)

Launch Visual Studio

My first program (2)

Type the project name (First). In our case the solution name is set automatically (also

First is acceptable.

Use the location selected by Visual Studio wizard. But write it down on a piece of

paper. Later you need it for opening the project folder and if you do not remember the

location, you will have trouble to find it.

Do not get confused: C is the sybset of C++.

My first program (3)

right click

Set Main.cpp as the source

file name

My first program (4)
Type the code:

#include "stdio.h"

int main()

{

 printf("This is my first program");

 return 0;

}

My first program (5)

This is the result in command prompt (or console) window.

My first program (6)

We created only one file: Main.cpp. All the other files

and folders are created automatically by Visual Studio

wizard according to our initial settings (C++, empty

project, etc). The location of Main.cpp is also determined

by wizard. Do not try to change the location of files:

Visual Studio will get confused and the results are

unpredictable.

By terms of Visual Studio, we have now solution named

First. The solution file *.sln contains the general

description of solution.

By default, the solution is configured into debug mode. It

means that the executable file contains a lot of additional

information helping to find and fix errorrs (and is

therefore very long).

When we suppose that there are no more errors, we may reconfigure the solution to the

release mode. Then the wizard creates several new folders and the build tools generate a new

and shorter *.exe without auxiliary information needed for debugging.

My first program (6)
#include "stdio.h" // header file handled by preprocessor

int main() // function header

{ // the function body begins

printf("This is my first C-program");

return 0;

} // the body function ends

A program may consist of thousands of instructions and may be written by several

programmers. Therefore the source code is divided into sections. In C these sections are

called functions.

A C function consists of header and the following to it body. The body is enclosed in

braces { }.

The body includes statements (here we have 2 statements). Each statement must be

terminated with semicolon ;

The function header specifies the function name. The name of our function is main.

An experienced programmer always completes his source code with comments (various

remarks, explanations, etc.). The comments are for humans and the building tools

ignore them. An one-line comment starts with //. Comments consisting of several lines

must start with /* and end with */.

My first program (8)
#include "stdio.h"

int main()

{

printf("This is my first C-program");

// main is the calling function

// printf is the called function

// "This is my first C-program" is the parameter for printf specifying the task

return 0;

}

A function can call some other function. It means that a function asks another function

to perform some operations or calculate some values and send back the results.

Our program actually consists of two functions: main and printf. The main is written by

us. The printf is the standard part of Visual Studio. Here the main orders printf to print

in the command promt window the text presented in parentheses.

When main reaches the line containing the call, the control is turned over to printf.

When printf has finished its task, the control is returned to the calling function.

The calling function must exactly specify the task that the called function has to

perform (currently, what to print). Therefore, the call starts with the name of called

function followed by parameters within the parentheses.

My first program (9)

#include "stdio.h"

int main()

{

printf("This is my first C-program");

return 0;

}

The computer runs programs that are in machine code. The compiler transforms the source

code written in C into machine code. But to do this, it needs information about standard

functions (currently, printf) – for example, what are the allowed parameters. This information

is stored in the standard header files (for printf in file stdio.h). Therefore the compiler at first

preprocesses the source code, including the *.h files specified by programmer into the *.cpp

file.

The building has two stages:

1. Compiling – the compiler

checks the correctness of

source code and creates the

object code.

2. Linking – the linker connects

the different parts of program

into one executable.

My first program (10)

#include "stdio.h"

int main()

{

printf("This is my first C-program");

return 0;

}

The standard functions like printf are already compiled. Their object code files (*.obj) are

stored in standard library files. The library files as well as the header files are the standard

part of Visual Studio. The linker extracts the needed standard functions from the libraries and

joins them with object code compiled from source code written by us.

Keywords
Integrated Development Environment (IDE)

Wizard

Solution *.sln

Source code file *.c or *.cpp

Object code file *.obj

Header file *.h

Library file *.lib

Executable file *.exe

Machine code

Build – preprocessor, compiler, linker

Debug – breakpoint

Debug mode and release mode

Function – header and body, braces {…}, function name

Statement, semicolon

Comments, //… and /*…*/

Call to function, function parameters, parentheses (…)

My second program (1)
#include "stdio.h" // to describe standard functions printf and gets_s

#include "stdlib.h" // to describe standard function atoi

int main()

{

int x, y, z;

char line[81];

printf("Type the first integer: ");

gets_s(line);

x = atoi(line);

printf("Type the second integer: ");

gets_s(line);

y = atoi(line);

z = x + y;

printf("The sum is %d", z);

return 0;

}

#include followed by *.h file name in quotation marks is the preprocessor directive.

The number sign # must be the first character in the directive row. This row may

contain only one directive (which may be followed by comment). The directive

decribing a standard function must be located before the first usage of this function.

Positional numeral systems (1)
Our everyday decimal numeral system uses only 10 digits: 0, 1, … , 9 (the radix is 10).

But as the system is positional, we may write down any integers: in value "3" digit 3

presents "ones", in value "37" digit 3 presents "tens", in value "373" digit "3" presents

"hundreds" and also "ones": 37 = 3*10 +7*1 and 373 = 3*100 + 7 *10 + 3*1.

But the radix may be greater or lesser than 10. In the hexadecimal system the radix is

16 and the digits are 0, 1, 2, …, 9, A, B, C, D, E, F. Consequently:

010 = 016,…., 910 = 916, 1010 = A16, 1110 = B16, 1210 = C16, 1310 = D16, 1410 = E16, 1510 = F16,

1610 = 1016, 1710 = 1116,…., 25510 = FF16,…., 409610 = 100016,….

In the binary system the radix is 2 and the digits are 0 and 1. Consequently:

010 = 02, 110 = 12, 210 = 102, 310 = 112, 410 = 1002, 510 = 1012, 610 = 1102, 710 = 1112, ,….

The easest way to convert is to use the Windows or mobile phone calculators set to

programmer's mode.

Az 16 = 24, converting from hexadecimal to binary is very simple: replace each

hexadecimal digit with 4 binary digits. And vice versa: divide the binary digits into

groups of 4 and replace the groups with the proper hexadecimal digit. For example

12310 = 7B16 = 0111 | 10112

Each software engineer must know without any aid resource that:

Positional numeral systems (2)

Decimal Hexadecimal Binary

0 0 0000

1 1 0001

2 2 0010

3 3 0011

4 4 0100

5 5 0101

6 6 0110

7 7 0111

8 8 1000

9 9 1001

10 A 1010

11 B 1011

12 C 1100

13 D 1101

14 E 1110

15 F 1111

Bits, bytes, nibbles and words

The basic unit of memory is bit. It can hold only two values: 0 or 1 (i.e. a binary digit).

The byte consists of 8 bits. The smallest integer that can be stored in a byte is 0000 | 0000

or simply 0. The biggest integer that can be stored in a byte is 1111 | 1111 or FF16 or 25510

Nibble consists of 4 bits. We may say that a byte contains two nibbles.

Word is the natural unit of memory for the given processor. For 32-bit processor the word

consists of 32 bits. For 64-bit processor the word consists of 64 bits.

To handle data stored in the computer memory we need to know, exactly where it is

located or in other words, what is the address of our data. The smallest addresable unit is

byte.

Do not forget that a kilobyte (KB) is 1024 (and not 1000) bytes. Similarly, a megabyte

(MB) is 1024*1024 bytes (1024 KB) and so on. However, some manufacturers do not

follow those definitions and define a KB as 1000 bytes.

Integers (1)
If our program uses integers from 0 to 255, we may store each integer on a separate byte.

But if we work with integers out of this range, we need fields consisting of two or even

more bytes:

Integers from range 0… 65,535 need a field of 2 bytes.

Integers from range 0…4,294,967,295 need a field of 4 bytes.

Generally, if we have a field of n bits, the greatest integer we can store on this field is 2n-1.

C statement

unsigned char c;

means that our program needs one byte memory for storing integers from range 0…255.

In the following statements, c is the identifier of this byte. In terms of C, we define a

variable of type unsigned char. In statement

unsigned char c1, c2, c3;

we declare 3 variables of type unsigned char with names c1, c2 and c3.

C statements used for specifying variables are called declarations.

To store a value on byte c, we have to write an assignment statement, for example

c = 10;

Integers (2)
Do not forget that declaration

unsigned char c;

does not initialize variable c, i.e. the byte we have got contains some occasional value. But

if we need, we may write the initial value right into the declaration:

unsigned char c = 10; // declaration + initialization

or

unsigned char c1 = 10, c2 = 20, c3;

c3 = c1 + c2; // c3 value is now 30

You must at first declare a variable (i.e. allocate memory for it) and initialize it or write a

statement to assign to it a value. Only after that you may use this variable.

unsigned char c1 = 10, c2, c3;

c3 = c1 + c2; // error, c2 is neither initialized nor never been assigned a value

c3 = c1 + c4; // error, variable c4 is not declared

If we use integers out of range 0…255, we have to use types unsigned short int, unsigned

int, unsigned long int, unsigned long long int:

unsigned short int si; // memory field of 2 bytes

unsigned int i; // memory field of 4 bytes

unsigned long int li; // memory field of 4 bytes

unsigned long long int lli; // memory field of 8 bytes

Integers (3)
Values of variables of unsigned types may be only positive integers. If we have also

negative integers, we must use signed types:

signed char c; // one byte

signed short int si; // memory field of 2 bytes

signed int i; // memory field of 4 bytes

signed long int li; // memory field of 4 bytes

signed long long int lli; // memory field of 8 bytes

Keyword signed may be omitted.

As the memory consists of bytes and the bytes are sequences of bits and bits may be in

state "0" or "1", we have only one possibility to store the sign: to agree that one of the bits

presents the sign (for example, if this bit is 0, the integer is positive and if 1, the integer is

negative. But in case of one-byte integers we have now only 7 bits for the value.

Consequently the ranges of signed variables and unsigned variables are different:

signed char: – 128…+127

signed short int: -32768…+32767

signed int and signed long int: -2147483648…+2147483647

Arrays
Declaration

char c;

gives us one byte for storing integers from range -128...+127. Declaration

char mc[10];

gives us a sequence of 10 bytes. Each byte can be used for storing an integer from the

mentioned range. This sequence of bytes is called as array. Here, mc is the name of array

and 10 is the number of members or the dimension of array. Similarly

int mi[100];

gives us a sequence of 400 bytes. Each 4-byte field can be used for storing a variable of

type int.

To declare an array, one has to specify the type of members, the name of array and the

dimension. The dimension (enclosed in brackets) must be a constant (not variable).

To access a member of array, write the array name and the ordering number (index) of the

member. The index is also closed in brackets, for example:

mc[0] = 10;

mi[10] = 1000;

The index of the first member is always 0. The index of the last member is always

dimension -1. Members of mi are mi[0], mi[1], …., mi[99] but not mi[100].

ASCII characters and strings (1)
As the memory consists of bytes and the bytes are sequences of bits and bits may be in

state "0" or "1", we have no possibility to store characters (letters, numbers, etc.) directly.

We can store only numerical values. Consequently, we need to have an encoding tabel,

replace characters in text with their encoded values (integers) and store the text as an array

of integers.

In the ASCII (American Standard Code for Information Interchange) character encoding

standard characters are encoded with one-byte integers. For example, I is 73, C is 67, T is

84, 1 is 49, 2 is 50 and hyphen is 45. So, text ICT-121 in memory is

char ict121[8];

ict121[0] = 73; ict121[1] = 67; ict121[2] = 84; ict121[3] = 45; ict121[4] = 49;

ict121[5] = 50; ict121[6] = 49; ict121[7] = 0;

Terminating zero at position 7 marks the end of text. In terms of C ict121 is a string –

array of one-byte integers encoded by ASCII table and terminated with byte containing

zero.

You may find the full ASCII table at http://www.asciitable.com/ .

It is very unconformtable to dig all time in ASCII table. There is a simpler way:

char ict121[8];

ict121[0] = 'I'; ict121[1] = 'C'; ict121[2] = 'T'; ict121[3] = '-'; ict121[4] = '1';

ict121[5] = '2'; ict121[6] = '1'; ict121[7] = 0;

http://www.asciitable.com/

ASCII characters and strings (2)

ASCII characters and strings (3)
char c1 = 1, c2 = 2, c3;

c3 = c1 + c2; // c3 is now 3

int i1 = 1, i2 = 2, i3;

i3 = i1 + i2; // i3 is also 3

The difference is only that char variables occupy one byte of memory, int variables four

byte of memory.

But

char c4 = '1', c5 = '2', c6;

c6 = c4 + c5; // c6 is now 49 + 50 = 99

'1', '2', 'A', 'a', '+', etc. are character constants. The compiler replaces them with the

corresponding integeres from ASCII table.

More examples:

char c7 = ' '; // space

char c8 = c7 + 50; // c8 is now 32 + 50 = 82

char c9 = '1' + '2'; // c9 is now 99

char c10 = 'b' - 'a'; // c10 is now 98 – 97 = 1

char c11 = 'q' + 1; // c11 is now 113 + 1 = 114

My second program (2)
#include "stdio.h" // to describe standard functions printf and gets_s

#include "stdlib.h" // to describe standard function atoi

int main()

{

int x, y, z; // declare three variables (4-byte signed integers) without initialization

char line[81]; // declare an array consisting of 81 one-byte signed integers

printf("Type the first integer: "); // call function printf and tell what to print

gets_s(line);

// gets_s reads the text you have typed and converts it to C-string, i.e. puts

// the integers corresponding to ASCII table into array line. If you, for example

// type 12, then line[0] will get value 49, line[1] will get value 50 and line[2]

// is used for the terminating zero. Dimension is 81 because the command

// prompt window width is 80 positions

x = atoi(line);

// atoi converts the string into four-byte integer. The result is assigned to

// variable x which becomes now initialized. Below we may use x for

// arithmetic operations

printf("Type the second integer: ");

gets_s(line); // use the same array line

y = atoi(line);

My second program (3)
z = x + y; // calculates the sum of two variables and assigns it to variable z

printf("The sum is %d", z);

// prints the result. Here %d means that argument z is an four-byte signed

// integer which printf has to convert into string

return 0;

}

Some conclusions:

1. Any value read from keyboard is stored as a string – an array of integers of type

char. The last member of string array is always the terminating zero (byte in which

all the bits are 0). It is added always automatically, the user simply needs to press

ENTER.

2. Arithmetical operations are possible only with values stored as integers (signed or

unsigned, 1, 2 4 or 8 bytes). Operations with strings are not supported.

3. Output into command prompt window is also a string.

4. Converting from strings into integers and vice versa is an inevitable part of C

program.

My third program(1)
#include "stdio.h"

#include "stdlib.h"

int main()

{

int x, y;

char line[81];

printf("Type the first integer: ");

gets_s(line);

x = atoi(line);

printf("Type the second integer: ");

gets_s(line);

y = atoi(line);

if (x > y)

printf("%d is greater than %d", x, y);

else if (x < y)

printf("%d is less than %d", x, y);

else

printf("%d is equal with %d", x, y);

return 0;

}

Branching (1)
The if statement is called a branching statement because it provides a junction where

the program has to select which of the two paths to follow:

if (<expression>)

<statement_1>;

<statement_2>;

If the expression is true, statement_1 and after that statement_2 is performed. If the

expression is false, statement_1 is skipped.

In most cases the expression here is a relational expression like x > y, x < y, x == y

(true if x and y are equal, do not forget that x = y means that value of y is assigned to x),

x >= y (equal or greater), x <= y (equal or less), x != y (true when x and y are not

equal).

But generally, the expression may be any expression. In that case the result of this

expression is considered to be true if it is a none-zero value. The zero value is

considered as false. For example:

int i = 3, j = 3, k;

if (k = i – j) // probably, the programmer wanted to write k == (i – j)

statement_1; // here always skipped

if (k = i + j) // probably, the programmer wanted to write k == (i + j)

statement_2; // here always executed

Branching (2)
The statement to be skipped or executed may be simple (just one expression) or

compound (several expressions). In the last case we have to use braces:

if (<expression>)

{

<expression_1>;

<expression_2>;

……………..

}

For better readability it is recommended to use the braces in all cases.

The if else statement enables to choose between two statements:

if (<expression>)

<statement_1>; // executed if the expression is true

else

<statement_2>; // executed if the expression is false

<statement_3>; // executed after statement_1 or after statement_2

else if simply means that statement_2 itself is also an if statement:

My third program (2)

if (x>y)

{

printf("%d is greater than %d", x, y);

}

else

{

if (x < y)

{

printf("%d is less than %d", x, y);

}

else

{

printf("%d is equal with %d", x, y);

}

}

Floating point variables (1)
A floating point number has sign (+ or -), integer part, fractional part and decimal

separator (point or comma). To store it in computer memory, we have to find a way

how to handle the separator (remember that we have nothing but bits in state 0 or 1).

The solution is specified by IEEE (Institute of Electrical and Electronics Engineers)

standard 754 and its main idea may be explained with the following example:

+1.234 = +0.1234 * 10+1

-12.34 = -0.1234 * 10+2

+123.4 = +0.1234 * 10+3

-0.1234 = -0.1234 * 100

+0.012.34 = +0.1234 * 10-1

-0.0023.4 = -0.1234 * 10-2

So, we may store a floating point number as a set of four components:

• sign of the original value

• value of the mantissa

• sign of the exponent

• value of the exponent

C has 3 floating point types: float, double and long double. In Visual Studio, however,

there is no difference between double and long double.

Floating point variables (2)
float f = 5.6; // single precision variable

declares 4-byte variable f and initializes it to 5.6. On this memory field:

sign of the value – 1 bit

mantissa – 23 bits

exponent with sign - 8 bits

The maximum value of numbers of type float is approximately 3.4 * 1038.

double d = 5.6; // double precision variable

declares 8-byte variable d and initializes it to 5.6. On this memory field:

sign of the value – 1 bit

mantissa – 52 bits

exponent with sign - 11 bits

The maximum value of numbers of type double is approximately 1.7 * 10308.

Type float is seldom used because the range and precision of double variables is much

better. Remark that for example (https://www.rapidtables.com/convert/number/decimal-

to-binary.html)

0.410 = 0.66666666666666666666…16 = 0.0110011001100110011…2

a "nice" decimal number has endless fractional part in hexadecimal and binary systems.

Therefore the number of bits used for storing mantissa affects the accuracy of

calculations very significally.

https://www.rapidtables.com/convert/number/decimal-to-binary.html
https://www.rapidtables.com/convert/number/decimal-to-binary.html

My first unaided written program (1)

My first unaided written program (2)
To compute the square root use standard function sqrt:

#include "math.h" // description of functions like sqrt, exp, sin, cos, etc.

double x, y;

x = sqrt(y);

However, before calling sqrt your program has to check is the argument positive or 0.

If you try to call sqrt with negative argument, your program will crash, but this is

unacceptable.

So, if b2 – 4ac is negative, your program has to print a message like "the equation has

complex roots" and skip the calculation of x1 and x2.

Division x = y / z; crashes when z is zero. Consequently, if the program prints "Type

value of a" and the user types zero, the equation has no solution. In that case your

program has to print a message like "error in input data" and skip the following

operations.

My first unaided written program (3)

	Slide 1: What is programming?
	Slide 2: Integrated development environment
	Slide 3: My first program (1)
	Slide 4: My first program (2)
	Slide 5: My first program (3)
	Slide 6: My first program (4)
	Slide 7: My first program (5)
	Slide 8: My first program (6)
	Slide 9: My first program (6)
	Slide 10: My first program (8)
	Slide 11: My first program (9)
	Slide 12: My first program (10)
	Slide 13: Keywords
	Slide 14: My second program (1)
	Slide 15: Positional numeral systems (1)
	Slide 16: Positional numeral systems (2)
	Slide 17: Bits, bytes, nibbles and words
	Slide 18: Integers (1)
	Slide 19: Integers (2)
	Slide 20: Integers (3)
	Slide 21: Arrays
	Slide 22: ASCII characters and strings (1)
	Slide 23: ASCII characters and strings (2)
	Slide 24: ASCII characters and strings (3)
	Slide 25: My second program (2)
	Slide 26: My second program (3)
	Slide 27: My third program(1)
	Slide 28: Branching (1)
	Slide 29: Branching (2)
	Slide 30: My third program (2)
	Slide 31: Floating point variables (1)
	Slide 32: Floating point variables (2)
	Slide 33: My first unaided written program (1)
	Slide 34: My first unaided written program (2)
	Slide 35: My first unaided written program (3)

